3.373 \(\int \frac{\sqrt{a+b x^3}}{x^4} \, dx\)

Optimal. Leaf size=47 \[ -\frac{\sqrt{a+b x^3}}{3 x^3}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b x^3}}{\sqrt{a}}\right )}{3 \sqrt{a}} \]

[Out]

-Sqrt[a + b*x^3]/(3*x^3) - (b*ArcTanh[Sqrt[a + b*x^3]/Sqrt[a]])/(3*Sqrt[a])

________________________________________________________________________________________

Rubi [A]  time = 0.0266854, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {266, 47, 63, 208} \[ -\frac{\sqrt{a+b x^3}}{3 x^3}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b x^3}}{\sqrt{a}}\right )}{3 \sqrt{a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^3]/x^4,x]

[Out]

-Sqrt[a + b*x^3]/(3*x^3) - (b*ArcTanh[Sqrt[a + b*x^3]/Sqrt[a]])/(3*Sqrt[a])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x^3}}{x^4} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{x^2} \, dx,x,x^3\right )\\ &=-\frac{\sqrt{a+b x^3}}{3 x^3}+\frac{1}{6} b \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,x^3\right )\\ &=-\frac{\sqrt{a+b x^3}}{3 x^3}+\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b x^3}\right )\\ &=-\frac{\sqrt{a+b x^3}}{3 x^3}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+b x^3}}{\sqrt{a}}\right )}{3 \sqrt{a}}\\ \end{align*}

Mathematica [A]  time = 0.0315483, size = 59, normalized size = 1.26 \[ -\frac{b x^3 \sqrt{\frac{b x^3}{a}+1} \tanh ^{-1}\left (\sqrt{\frac{b x^3}{a}+1}\right )+a+b x^3}{3 x^3 \sqrt{a+b x^3}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x^3]/x^4,x]

[Out]

-(a + b*x^3 + b*x^3*Sqrt[1 + (b*x^3)/a]*ArcTanh[Sqrt[1 + (b*x^3)/a]])/(3*x^3*Sqrt[a + b*x^3])

________________________________________________________________________________________

Maple [A]  time = 0.015, size = 36, normalized size = 0.8 \begin{align*} -{\frac{b}{3}{\it Artanh} \left ({\sqrt{b{x}^{3}+a}{\frac{1}{\sqrt{a}}}} \right ){\frac{1}{\sqrt{a}}}}-{\frac{1}{3\,{x}^{3}}\sqrt{b{x}^{3}+a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^3+a)^(1/2)/x^4,x)

[Out]

-1/3*b*arctanh((b*x^3+a)^(1/2)/a^(1/2))/a^(1/2)-1/3*(b*x^3+a)^(1/2)/x^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(1/2)/x^4,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.56332, size = 258, normalized size = 5.49 \begin{align*} \left [\frac{\sqrt{a} b x^{3} \log \left (\frac{b x^{3} - 2 \, \sqrt{b x^{3} + a} \sqrt{a} + 2 \, a}{x^{3}}\right ) - 2 \, \sqrt{b x^{3} + a} a}{6 \, a x^{3}}, \frac{\sqrt{-a} b x^{3} \arctan \left (\frac{\sqrt{b x^{3} + a} \sqrt{-a}}{a}\right ) - \sqrt{b x^{3} + a} a}{3 \, a x^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(1/2)/x^4,x, algorithm="fricas")

[Out]

[1/6*(sqrt(a)*b*x^3*log((b*x^3 - 2*sqrt(b*x^3 + a)*sqrt(a) + 2*a)/x^3) - 2*sqrt(b*x^3 + a)*a)/(a*x^3), 1/3*(sq
rt(-a)*b*x^3*arctan(sqrt(b*x^3 + a)*sqrt(-a)/a) - sqrt(b*x^3 + a)*a)/(a*x^3)]

________________________________________________________________________________________

Sympy [A]  time = 2.17346, size = 49, normalized size = 1.04 \begin{align*} - \frac{\sqrt{b} \sqrt{\frac{a}{b x^{3}} + 1}}{3 x^{\frac{3}{2}}} - \frac{b \operatorname{asinh}{\left (\frac{\sqrt{a}}{\sqrt{b} x^{\frac{3}{2}}} \right )}}{3 \sqrt{a}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**3+a)**(1/2)/x**4,x)

[Out]

-sqrt(b)*sqrt(a/(b*x**3) + 1)/(3*x**(3/2)) - b*asinh(sqrt(a)/(sqrt(b)*x**(3/2)))/(3*sqrt(a))

________________________________________________________________________________________

Giac [A]  time = 1.11195, size = 58, normalized size = 1.23 \begin{align*} \frac{1}{3} \, b{\left (\frac{\arctan \left (\frac{\sqrt{b x^{3} + a}}{\sqrt{-a}}\right )}{\sqrt{-a}} - \frac{\sqrt{b x^{3} + a}}{b x^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^3+a)^(1/2)/x^4,x, algorithm="giac")

[Out]

1/3*b*(arctan(sqrt(b*x^3 + a)/sqrt(-a))/sqrt(-a) - sqrt(b*x^3 + a)/(b*x^3))